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NOMENCLATURE * 

CP specific heat at constant pressure; 
G, mass flow rate of coolant per unit length normal to 

x, y plane: 
k 
l,m’ 

effective thermal conductivity of porous region; 
position along boundary S; 

n* for incompressible flow 

for compressible flow M = p/p,; 
p, for incompressible flow P = p/p, ; for compressible 

flow P = (PlP,)2 ; 

P. pressure; 

Q ,o,a,, heat conducted into surface S per unit length 
normal to x, y plane : 
temperature ratio t/t, ; 
absolute temperature; 
velocity vector; 
dimensionless coordinates x/h,, y/h,, where h, is 
defined in equation (8); 
surfaceabsorptivityforincident radiation: 
permeability ofporous material: 
parameter P,C,KP&&,,; 

fluid viscosity; 
dimensionless gradient in X, Y plane, t(a/aX) + 

* Other symbols are defined in text. 

Subscripts 
1, insulated and impervious surface; 
r, reference condition : 
% on surface wherecoolant exits from porous medium; 
0, on surface where coolant enters porous medium. 

INTRODUCTION 
AN EFFECTIVE cooling technique can be obtained by utilizing 
porous materials so that coolant can be forced out through 
the surface that is subjected to a heat load. For a given 
pumping pressure the amount of coolant passing through 
a location on the cooled surface will depend on the flow 
resistance along the path through the porous region to that 
location. The shape of the porous region will regulate the 
flow resistance and hence the local cooling capability along 
the surface. If a heat flux distribution is imposed along the 
surface and it is also desired to maintain the surface at a 
uniform design temperature, it is required to know what 
shape the porous region should have to meet these condi- 
tions. 

In [l] a heat transfer analysis was devised for a three- 
dimensional porous cooled region of specified shape. The 
analysis obtained the region temperature distribution in 
terms of a potential function found by solving Laplace’s 
equation in the geometry of the porous region subject 
to simple boundary conditions. Since steady-state heat 
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conduction is governed by Laplace’s equation, that analysis 

related the porous cooled problem to heat conduction 

theory. In [2] a heat conduction analysis was developed to 

determine the shape of a conducting nonporous region 

with a surface having simultaneously a uniform temperature 
and a specified heat flux distribution. The purpose of this 

note is to show how the results of [l] and [2] can be com- 

bined to determine the required shape of a porous cooled 

region. Since this note is rather brief, it would help for the 

reader to become familiar with [l] and [2]. 

ANALYSIS Perfect gas law (for compressible case) 

The general two-dimensional configuration considered 

here is shown in Fig. 1. A coolant reservoir at p,,, t, is 

adjacent to S, which is open to flow. Coolant exits through 

S which receives a heat flux distribution q,(l). The remaining 

boundary S, is impervious to flow and is insu!ated. As the 

coolant approaches the inlet surface S, the pressure drop 

from flow acceleration is small compared with the drop 

through the porous material so that p0 z p,. Since p,, and 

ps are constants, the velocities at S, and S are locally normal 

to these surfaces. 

,’ = pRt 

Boundary conditir ‘9: 

k,A, .vt = pC,(t - t ,)A,. u 

p = p. = p, = constant I x,y on S, 

The governing equations and boundary conditions are: 

t = t, = constant 

k,f!, Vt = 4,(4 

I 

Y. y on S 

p = p, = constant 

Conservation of mass 

V.(pu) =0 

v.u =o 

Darcy’s law 

(Compressible) 

(Incompressible) 

Energy conservation 

V. 4 = 0 where g = k,Vt + iJaC,,r 

v 43olant exit surface, 

‘?-Insulated and 

- ‘\ 
impervious 

LCoolant inlet surface, 
surface, Si 

So at Pg,fo 

0 

Coolant reservoir at p,, f, 

(la) 

(lb) 

(2) 

(3) 

(4) 

(5aj 

(5b) 

(W 

16b) 

(64 

FIG. 1. Two-dimensional porous region with unknown shape 
ofcoolant exit surface, p 1 > p,, t, > t, 
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A,.u = 0 (74 
A,.q = 0 I x, y on Si. 

VW 

These equations are taken from [l] with the exception of 
equation (6b) which accounts for the specified heat flux 
along S. The solution in [l] satisfies all conditions except 
equation (6b) which can be satisfied here by letting S have 
an unspecified shape to be determined. 

In [l] all lengths are non-dimensionalized by an arbitrary 
!ength h,. For the present situation iet 

h, = 4,,(t, - r,)lQ,l/%,, (8) 

where qs , is a reference heat flux, and Qs is given later. The 
analysis in [l] with the addition of equation (6b) in dimen- 
sionless form, shows that the present solution can then be 
obtained in terms of a potential function 4 found from 

P24 = 0 X, Yin porous region (9) 

with the boundary conditions 

4 = 0 X, Yon S, (10) 

$=l 
X, Yon S 

(lla) 

A,. 04 = Y,W,, , (1 1’4 

Ai.Gq5 = 0 X, YonSi (12) 

The temperature distribution in the porous region is ex- 
pressed in terms of 4(X, Y) as 

T = 1 + (T, - l)exp[Q,(l - +)] (13) 

where 

Qs = - In ( > T,-l 
q-1 

and T, is found from the pressure ratio by using 

T. 

P,_l=l s MT 
---dd7: 

1 1-T 
T0 

(15) 

+ 

FIG. 2. Cross section of two-dimensional porous region with 
free boundary at uniform temperature and with uniform 

absorptivity exposed to unidirectional radiation. 

Although the temperature distribution is of some interest, 
the main result to be obtained here is the shape ofthe bound- 
ary S. This will provide the proper coolant flow distribution 
to remove the specified surface heat flux while maintaining 
the desired surface temperature. For this part ofthe solution, 
the technique and results of [Z] can be directly applied as 
the governing equation and boundary conditions in [2] 
are the same as the present equations (9)-(12). 

The example treated in [2] is a nonporous region with 
isothermal surface S of unknown shape being subjected to 
a unidirectional radiative heat flux y,, Fig. 2. The local 
heat absorption along S is q,(1) = aq,cosj?. Using the 
boundary condition (llb) with q,, = aq,, and resolving 
qs(l) into X and Y components gives the derivative condi- 
tions for 4 in Fig. 3. 

FIG. 3. Porous region and boundary conditions in dimen- 
sionless physical plane. 

The solution of the boundary value problem in Fig. 3 
for the shape of surface S is obtained in [2] by conformal 
mapping, with the resulting coordinates along S being 

x x L=>= l+ 2 

A a ~Jiiz4b’l) 

x is ( ln  b&l - 6’) + SJ(1 - b’) 

&a’ - b2) > 
b 

&‘-b’;(l -S2) 

-i[F(sinwli,b) + K(b)]} (16a) 

where -b < 5 < 0 

r,_Y,_ 2 

A a nAK(,/(l - 0’)) 

x 
bJ(1 -t’,-&/‘(l dt 

.j(b’-t2) 
-b 

J(b2-~*),/U 4’) 

where-b<taO 
(16b) 
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F’IG. 4. Shape of porous region for various values of the 
physical parameter. (a) Thin regions. (b) Regions of ixrter- 

mediate thickness. (c)Thick regions. 

The t is a dummy variable of integration. F is the elliptic 

integral of the first kind, and K is the complete elliptic 

integral of the first kind, [3]. The physical parameter A is 
the dimensionless half-width of surface SO shown in Fig. 3, 

and for the porous problem is equal to 

From [2] the quantity b is related to A by 

2 
A= 

Figure 4 (from [2j) shows the resulting shapes of the qurfacc 

S for various values of A. 

The heat conducted into the porous region depends on 

the normal temperature derivative at S. The only change 

from [2] to the present case is the use of h, from equation (8) 

to non-dimensionaltie the normal direction rather than the 

SC& factor y of [2f. Making this change yiekls Fig. 5 for the 

heat Bow into S. An overall energy balance gives 

Q,o,rl = C,W, -- LI 

so that Fig. 5 also provides the total coolant flow rate 

CONCLUSIONS 
An analogy has been shown between heat transfer in a 

three-dimensional porous cooled region and ordinary 

heat conduction. A heat conduction anafysis in a nonporous 
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6r 

or 

FIG. 5. Dimensionless coolant or heat flow as a function 
of physical parameter involving absorbed incident radiation. 

region having a free boundary can then be utilized to obtain 
results for a related porous cooled problem. In this way 
a porous region shape is obtained that will provide proper 
cooling for a specified beat flux variation along a surface 
while mainta~~g a specified uniform surface temperature. 
A two-dimensional example is given where a surface is 
subjected to thermal radiation from one direction. The 
analysis applies for three dimensions, but the example is 
limited to two dimensions because conformal mapping is 
used to obtain the free boundary shape. 
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NOMENCLATURE 

solution of C ec’ erk C = i/(&/x): 
constant in R = C,t”; 
constant in 6, = C&t,): 

% specific heat capacity; 
F@, (p,p’,y, t’), function defined in text as (1 - 6+); 
h latent heat of vaporization; 
h; surface heat transfer coefficient at 

interface between liquid and vapour: 


